

Appunti di Fisica '18 & Dottorato di Ricerca in Fisica

17 aprile ore 15:00 Sala seminari, CNR-IPCF

Upconversion nanoparticles for biophotonics application

Fan Wang

(Institute for Biomedical Materials and Devices, University of Technology Sydney, Australia)

Through introducing thousands of photon sensitizers and activators ions to form an energy-transfer network within a single nanoparticle, upconversion nanoparticles (UCNPs) can up-convert low energy near infrared (IR) photons into high energy visible emissions. Non-bleaching and non-blinking UCNPs are among the best probes for long-term tracking studies, autofluorescence-free biomolecular sensing, super resolution microscopy imaging, in vivo bio-imaging, and light-triggered nanomedicine applications.

In this talk, I will present part of our research on biophotonics application of UCNP, including single nanoparticle tracking, and UCNP super-resolution imaging. The work of single UCNP tracking represent the first system to have capability in distinguishing and tracking a single nanoparticle from the cluster of nanoparticles by human eye through a microscope. Moreover, we harness the properties of population inversion on single UCNP to realize low-power super-resolution stimulated emission depletion (STED) microscopy and achieve the resolution of 28nm. Furthermore we report that upconversion nanoparticles (UCNPs) can unlock a new mode of near-infrared emission saturation (NIRES) nanoscopy for super-resolution. We achieved a resolution of 40 nm by single beam through 60µm liver tissue.

http://sites.google.com/site/AppuntiDiFisicaMessina/